binary array造句
例句與造句
- Existence of generalized perfect binary arrays
廣義最佳二進(jìn)陣列的存在性 - Method before marshaling the acl into a binary array
方法,以便將acl封送到二進(jìn)制數(shù)組中。 - An element contains a name , a namespace , a mime type , and a binary array of data
元素包含了名稱、名稱空間、 mime類型和二進(jìn)制數(shù)據(jù)數(shù)組。 - Object . this length should be used before marshaling the acl into a binary array with the
在使用getbinaryform方法將acl封送到二進(jìn)制數(shù)組中之前,應(yīng)使用該長(zhǎng)度。 - Object . this length should be used before marshaling the access control list into a binary array by using the
應(yīng)該在使用getbinaryform方法將訪問(wèn)控制列表封送到二進(jìn)制數(shù)組中之前使用此長(zhǎng)度。 - It's difficult to find binary array in a sentence. 用binary array造句挺難的
- The conception " almost perfect arrays " is proposed and it is shown that the existence of an almost perfect binary array is equivalent to the existence of a certain divisible difference set
提出了幾乎完美陣列的概念,證明了完美二元陣列的存在性等價(jià)于一種特定的可分差集的存在性。 - The method in this paper provides a new approach to search perfect binary array pairs and quasi - perfect binary array pairs of big volume . it also can be used in the fast searching program for the sequences and arrays of other forms
本文提出的方法為尋找大體積的最佳二進(jìn)陣列偶和準(zhǔn)最佳二進(jìn)陣列偶提供了一種新的途徑,此方法還可以應(yīng)用到對(duì)其它形式的序列或陣列的快速搜索程序中。 - It is of important academic value and practical meaning to study perfect signal . this paper aims at a new form signal - array pair , the theory of array pairs , perfect binary pairs and quasi - perfect binary array pairs is discussed synthetically
因此對(duì)最佳信號(hào)理論進(jìn)行研究有重要的理論價(jià)值和實(shí)際意義。本文針對(duì)一種新的信號(hào)形式一陣列偶,對(duì)陣列偶、最佳二進(jìn)陣列偶以及準(zhǔn)最佳二進(jìn)陣列偶理論進(jìn)行了綜合探討。 - A composite method for constructing perfect binary array pairs of high - dimension and high - order with known perfect binary array pairs is proposed and verified . the type of perfect binary array pairs constructed with constant weight perfect binary array pairs is discussed . the method can be used to construct infinite perfect binary array pairs
提出并證明了用已知最佳二進(jìn)陣列偶構(gòu)造高維、高階最佳二進(jìn)陣列偶的復(fù)合構(gòu)造法;討論了用等重最佳二進(jìn)陣列偶復(fù)合構(gòu)造新的高維、高階最佳二進(jìn)陣列偶時(shí),所得到的最佳二進(jìn)陣列偶的型的變化結(jié)果.使用這種方法可構(gòu)造無(wú)窮多最佳二進(jìn)陣列偶 - Compared with exhausitive search algorithm , the search amout is remarkable reduced by this algorithm and the algorithm is very efficiency . with the searched perfect binary array pairs and quasi - perfect binary array pairs , new perfect binary array pairs of high dimension and volume can be constructed by all kinds of construct methods
通過(guò)與窮舉搜索算法的比較,本算法大大減少了搜索數(shù)量,具有較高的效率。利用搜索得到的最佳二進(jìn)陣列偶和準(zhǔn)最佳二進(jìn)陣列偶,可以用各種構(gòu)造方法構(gòu)造出新的高維和高階的最佳二進(jìn)陣列偶。 - When calculate the correlation function of binary array pairs , using the boolean calculation instead of the decimal multiplication , using the method of count the number of 1 in binary integer to calculate the correlation function of binary array pairs , the speed of searching is obviously improved by these methods . by the algorithm introduced in this paper , the constant weight and normative perfect binary array pairs whose volume from 4 to 28 and quasi - perfect binary array pairs whose volume from 2 to 24 were searched and gi ved the new result
此外,采用二進(jìn)制整數(shù)來(lái)表示陣列,通過(guò)對(duì)整數(shù)的邏輯運(yùn)算來(lái)實(shí)現(xiàn)陣列偶的移位變換、完全采樣變換等運(yùn)算;在計(jì)算二進(jìn)陣列偶的相關(guān)函數(shù)時(shí),用整數(shù)的邏輯運(yùn)算代替十進(jìn)制中的乘法運(yùn)算,并用計(jì)算二進(jìn)制整數(shù)中1的個(gè)數(shù)的方法來(lái)計(jì)算二進(jìn)陣列偶的相關(guān)函數(shù),以上方法的采用明顯地提高了搜索速度。利用上述算法,對(duì)體積為4 28的等重規(guī)范型最佳二進(jìn)陣列偶和體積為2 24的準(zhǔn)最佳二進(jìn)陣列偶進(jìn)行了搜索,并給出了新的結(jié)果。 - Based on this theory , a new searching algorithm is designed . in order to realize fast searching , the algorithm makes full use of the transform properties and necessary conditions of the perfect binary array pairs and quasi - perfect binary array pairs , exclude the array pairs of transform equivalence , so that reduced the searching space and amount , and improved the searching speed
為了實(shí)現(xiàn)快速搜索,本算法充分利用最佳二進(jìn)陣列偶、準(zhǔn)最佳二進(jìn)陣列偶的變換性質(zhì)和存在的必要條件,排除變換等價(jià)的陣列偶,從而縮減了搜索空間,減少了搜索數(shù)量,以達(dá)到提高搜索速度的目的。